skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramesh, Srivatsan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recyclable and biodegradable microelectronics, i.e., “green” electronics, are emerging as a viable solution to the global challenge of electronic waste. Specifically, flexible circuit boards represent a prime target for materials development and increasing the utility of green electronics in biomedical applications. Circuit board substrates and packaging are good dielectrics, mechanically and thermally robust, and are compatible with microfabrication processes. Poly(octamethylene maleate (anhydride) citrate) (POMaC) – a citric acid-based elastomer with tunable degradation and mechanical properties – presents a promising alternative for circuit board substrates and packaging. Here, we report the characterization of Elastomeric Circuit Boards (ECBs). Synthesis and processing conditions were optimized to achieve desired degradation and mechanical properties for production of stretchable circuits. ECB traces were characterized and exhibited sheet resistance of 0.599 Ω cm−2, crosstalk distance of <0.6 mm, and exhibited stable 0% strain resistances after 1000 strain cycles to 20%. Fabrication of single layer and encapsulated ECBs was demonstrated. 
    more » « less
  2. Abstract This study presents a comprehensive survey of microgel‐coated materials and their functional behavior, describing the complex interplay between the physicochemical and mechanical properties of the microgels and the chemical and morphological features of substrates. The cited literature is articulated in four main sections: i) properties of 2D and 3D substrates, ii) synthesis, modification, and characterization of the microgels, iii) deposition techniques and surface patterning, and iv) application of microgel‐coated surfaces focusing on separations, sensing, and biomedical applications. Each section discusses – by way of principles and examples – how the various design parameters work in concert to deliver functionality to the composite systems. The case studies presented herein are viewed through a multi‐scale lens. At the molecular level, the surface chemistry and the monomer make‐up of the microgels endow responsiveness to environmental and artificial physical and chemical cues. At the micro‐scale, the response effects shifts in size, mechanical, and optical properties, and affinity towards species in the surrounding liquid medium, ranging from small molecules to cells. These phenomena culminate at the macro‐scale in measurable, reversible, and reproducible effects, aiming in a myriad of directions, from lab‐scale to industrial applications. 
    more » « less